Effect of the size of molecularly imprinted polymers sensing materials on piezoelectric quartz crystal sensor performance.

نویسندگان

  • Zhaohui Zhang
  • Yingju Liu
  • Yumei Long
  • Lihua Nie
  • Shouzhuo Yao
چکیده

The effect of the size of the molecularly imprinted polymers (MIPs) on the piezoelectric quartz crystal (PQC) sensor performance was investigated. Erythromycin imprinted polymers microspheres with different sizes were synthesized by precipitation polymerization. The size of the MIPs was characterized by using transmission electron microscope (TEM) analysis. Being coated with a poly(vinyl chloride) (PVC) membrane containing MIPs, the proposed PQC sensor can selectively adsorb the template molecule. Investigation of the performance of sensors modified with different sizes of MIPs showed that PQC sensor modified with smaller size MIPs exhibited better performance and excellent selectivity. Other influencing factors on sensor functions modified with different sizes MIPs were also investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensor Array Based on Molecularly Imprinted Polymers for Simultaneous Detection of Lipoproteins

Herein we report a sensor array based on quartz crystal microbalance (QCM) to simultaneously detect two biomarkers, namely low-density lipoprotein (LDL), and high-density lipoprotein (HDL). Selective recognition takes place through molecularly imprinted polymers (MIP) with both MIPs and corresponding non-imprinted polymer (NIP) as reference electrode. Sensor array performs highly appreciably in...

متن کامل

Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles.

Molecularly imprinted polymers (MIPs) are gaining great interest as tailor-made recognition materials for the development of biomimetic sensors. Various approaches have been adopted to interface MIPs with different transducers, including the use of pre-made imprinted particles and the in situ preparation of thin polymer layers directly on transducer surfaces. In this work we functionalized quar...

متن کامل

Hierarchical Thin Film Architectures for Enhanced Sensor Performance: Liquid Crystal-Mediated Electrochemical Synthesis of Nanostructured Imprinted Polymer Films for the Selective Recognition of Bupivacaine

Nanostructured bupivacaine-selective molecularly imprinted 3-aminophenylboronic acid-p-phenylenediamine co-polymer (MIP) films have been prepared on gold-coated quartz (Au/quartz) resonators by electrochemical synthesis under cyclic voltammetric conditions in a liquid crystalline (LC) medium (triton X-100/water). Films prepared in water and in the absence of template were used for control studi...

متن کامل

Fabrication of a Selective and Sensitive Electrochemical Sensor Modified with Magnetic Molecularly Imprinted Polymer for Amoxicillin

A modified electrochemical sensor for the determination of amoxicillin (AMX) was reported in this paper. The magnetic molecularly imprinted polymer (MMIP) were suspended in AMX solution and then collected on the surface of a magnetic carbon paste electrode (CPE) via a permanent magnet, situated within the carbon paste electrode and then the voltammetry signals were recorded. It was confirmed th...

متن کامل

QCM sensing of bisphenol A using molecularly imprinted hydrogelconducting polymer matrix

Molecular imprinting is a well-known fabrication technique for designing artificial receptors and molecular sensors. The technique resembles a lock and key mechanism and utilizes shape-complementary cavities within polymeric materials as molecular recognition sites for various relevant molecules. In this study, we prepared molecularly imprinted polypeptide gel layers based on cyclodextrin-modif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical sciences : the international journal of the Japan Society for Analytical Chemistry

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2004